قياس (رياضيات)
يعتبر القياس في الرياضيات دالة تقوم بربط عدد ما يدعى الحجم أو السعة أو الاحتمال بمجموعة جزئية من مجموعة كبرى. وهذا المفهوم للقياس الرياضي يعتبر أساسيا في التحليل الرياضي ونظرية الاحتمالات. تتطور هذا المفهوم من الحاجة لإجراء مكاملة على مجموعات اعتبارية غير معينة بدلا من إجراء التكامل بالطريقة التقليدية.
نظرية القياس تشكل أحد أجزاء التحليل الحقيقي الذي يبحث في جبر-σ، القياسات، دوال القياس والتكاملات. وتعتبر ذات أهمية خاصة في نظرية الاحتمالات والإحصاء.
التعريف الرسمي
رسمياً, القياس μ هو عبارة عن دالة معرفة على جبر-σ يدعى (Σ) على المجموعة X بقيم ضمن المجال [0, ∞] بحيث يتم تحقيق الخواص التالية :
- المجموعة الخالية لها قياس صفر:
- قابلية الإضافة العدودة أو قابلية الإضافة-سيغما: إذا كان E1, E2, E3,... عبارة عن متتالية عدودة من مجموعات متفارقة disjoint sets مثنى مثنى ضمن Σ, فيكون قياس اجتماع جميع E مساويا ل مجموع القياسات لجميع E:
The الثلاثية (X,Σ,μ) تدعى عندها فضاء القياس measure space، وعناصر Σ تدعى مجموعات مقيسة أو قابلة للقياس measurable sets.
|
ملف:Nuvola apps edu mathematics-ar.svg | هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين، فساهم في إثرائها بالمشاركة في تحريرها. |
ca:Teoria de la mesura cs:Teorie míry da:Målteori de:Maßtheorie el:Θεωρία μέτρου Measure (mathematics)]] eo:Mezurteorio es:Teoría de la medida fa:نظریه اندازه fi:Mittateoria fr:Mesure (mathématiques) he:מידה (מתמטיקה) hu:Mérték (matematika) id:Ukuran (matematika) is:Mál (stærðfræði) it:Misura (matematica) ja:測度論 ko:측도 mk:Мера (математика) nl:Maat (wiskunde) pl:Miara (matematyka) pt:Medida (matemática) ro:Măsură (matematică) ru:Мера множества sk:Teória miery sr:Мера (математика) sv:Mått (matematik) th:ทฤษฎีการวัด uk:Міра множини vi:Độ đo zh:测度