جيب التمام

قالب:صندوق معلومات دالة رياضية في الرياضيات، جَيْب التَمَام[١] (بالإنجليزية: Cosine) هو أحد الدوال المثلثية الرئيسية، وهو نسبة الضلع المجاور لزاوية إلى الوتر في مثلث ذي زاوية قائمة، حيث يكون الوتر هو الضلع المقابل للزاوية القائمة.

الدوال المثلثية هي دوال لزوايا هندسية، وهي دوال مهمة عندما يُراد دراسة مثلث أوعرض ظواهرِ دورية. يمكن تعريف هذه الدوال كنسبة لأضلاع مثلث قائم يَحتوي تلك الزاويةَ أَو بشكل أكثر عمومية كإحداثيات على دائرة مثلثية أو دائرة واحدية.

الدوال المثلثية هي دوال ترتبط بـالزاوية ، وهي مهمة في دراسة المثلثات وتمثيل الظواهر المتكررة (كالموجات). ويمكن تعريف الدوال المثلثية على أنهم نسب بين ضلعين في مثلث قائم فيه الزاوية المعنية. أو بشكل أوسع، كنسبة بين إحداثيات نقاط على دائرة الوحدة. ، ويعتبر دوما عند الإشارة إلى المثلثات أن الحديث يدور حول مثلث في سطح مستوي (مستوى إحداثي أو إقليدي)، وذلك ليكون مجموع زوايا المثلث 180 درجة دائما. وهناك ثلاثة دوال مثلثية أساسية نوضحها للزاوية A وهي:

  • جيب الزاوية A، ويُرمز له بالرمز «جا A» (بالإنجليزية: Sin A)، ويساوي النسبة بين الضلع المقابل للزاوية مقسوما على الوتر. (a مقسومة على h)
  • جيب تمام الزاوية A، ويُرمز له بالرمز «جتا A» (بالإنجليزية: Cos A)، ويساوي النسبة بين الضلع المجاور للزاوية مقسوما على الوتر. (b مقسومة على h)
  • ظل الزاوية A ، ويُرمز له بالرمز «ظا A» (بالإنجليزية: Tan A)، ويساوي (tan=sin/cos)، ويساوي النسبة بين الضلع المقابل للزاوية والضلع المجاور لها. (الظل يساوي a مقسومة على b )

خصائص

دورية

دالة جيب التمام هي دالة دورية دورها قالب:تعبير رياضي.

xcos(x+2π)=cosx

هذه الخاصية تتدفق بشكل طبيعي من التعريف انطلاقا من دائرة الوحدة. بتعبير أدق، هناك رقمان حقيقيان لهما نفس جيب التمام إذا كان مجموعهم أو فرقهم ينتمي إلى 2π.

زوجية

دالة جيب التمام هي دالة زوجية أي:

xcos(x)=cosx.

دالة عكسية

دالة جيب التمام هي دالة دورية وبالتالي غير تباينية. أيضا، نعتبر اقتصارها إلى قالب:تعبير رياضي التي هي تقابلية عند قالب:تعبير رياضي في المدى قالب:تعبير رياضي ، ثم نعرف دالتها العكسية، قوس جيب التمام:

arccos:[1,1][0,π]xarccosx

التي تحقق:

x[0,π]arccos(cosx)=x ;
x[1,1]cos(arccosx)=x

التفاضل والتكامل (Calculus)

مشتق (أو التغير في ميل الخط المستقيم) Slope

مشتق الدالة هو مقابل جيب الزاوية.

xcosx=sinx.

مشتق عكسي (تكامل الدالة) Integral

طالع أيضاً: مشتق عكسي وتكامل
cos(x)dx=sin(x).

نهايات أو غايات (Limits)

طالع أيضاً: نهاية دالة

من أجل إلى كل عدد حقيقي x، تكون دالة أو مقترنة جيب التمام مستمرة عند النقطة قالب:تعبير رياضي، لذلك تكون النهاية في هذه النقطة هي قالب:تعبير رياضي، بتعبير آخر:

limxacos(x)=cos(a)

أما بالنسبة لنهاية الدالة عند قالب:تعبير رياضي، فهي غير موجودة بسبب دورية الدالة

الشكل الأسي للدالة

  • لدينا:

eiθ=cosθ+isinθeiθ=cosθisinθ.

من تلك الصيغ (صيغ أويلر)، يمكن كتابة دالة جيب التمام على هذا الشكل:

cosθ=eiθ+eiθ2=cosh(iθ)

حيث قالب:تعبير رياضي هي الوحدة التخيلية التي مربعها يساوي الواحد، بتعبير آخر: i2=1، وcoshθ هي دالة جيب التمام الزائدية.

قيم جيب التمام لبعض الزوايا

x (الزاوية) جيب تمام الزاوية x
درجات دائري غراد القيمة بالضبط بالنظام العشري
0 0g 1 1
180° π 200g قالب:تعبير رياضي قالب:تعبير رياضي
15° π12 16 قالب:كسر مائلg 6+24 0,965925826289068
165° 11π12 183 1/3g 6+24 قالب:تعبير رياضي
30° π6 33 قالب:كسر مائلg 32 0,866025403784439
150° 5π6 166 قالب:كسر مائلg 32 قالب:تعبير رياضي
45° π4 50g 22 0,707106781186548
135° 3π4 150g 22 قالب:تعبير رياضي
60° π3 66 قالب:كسر مائلg 12 0,5
120° 2π3 133 قالب:كسر مائلg 12 قالب:تعبير رياضي
75° 5π12 83 قالب:كسر مائلg 624 0,258819045102521
105° 7π12 116 قالب:كسر مائلg 624 قالب:تعبير رياضي
90° π2 100g 0 0
36° π5 40g 1+54 0,8090169944
54° 3π10 60g 10254 0,5877852523
126° 7π10 140g

التعريف باستخدام الجداء القياسي

في هندسة المتجهات، يُعرَّف جيب التمام انطلاقا من الجداء القياسي للمتجهتين u و v ومعاييرها ||u|| و ||v|| بواسطة:

cos(u,v)=u,vu×v

تمثيل بياني لدالة جيب التمام

ملف:Unit circle.svg
دائرة الوحدة؛ وتعرف بأن الوتر فيها يساوي 1.

هذا الشكل المتحرك يوضح حساب موجة جيبية بواسطة دائرة وحدة . الموجة الجيبية يمكن أن تمثل تيارا مترددا.

ملف:Circle cos sin.gif
توضيح لدالة جيب التمام (بالأزرق) y=cosθ كنقطة تتحرك على دائرة الوحدة بزاوية θ بالتقدير الدائري.
  • في الدائرة المثلثية يعتبر جيب تمام زاوية في الدائرة المثلثية هو الإسقاط العمودي على المحور السيني (المحور الأفقي).

هذه موجة كاملة تنتشر إلى اليمين وموجة كاملة تنتشر إلى اليسار، كل منهما يعادل دورة واحدة في دائرة وحدة. ويمكن استخدامها في حسابات التيار المتردد.

ملف:CosinusWithMaple.jpeg وهي دالة زوجية حيث أن (Cos(-x) = Cos(x.

حساب جيب تمام الزاوية

يمكن التعبير عن جيب تمام الزاوية لزاوية x -معبرا عنها بالتقدير الدائري- بواسطة متسلسلة تايلور التالية:

cosx=1x22!+x44!x66!+=n=0(1)nx2n(2n)!.

اقرأ أيضا

مراجع

مراجع

قالب:شريط سفلي حساب المثلثات