راديان

ملف:Radian-common.svg
بعض الزوايا الشهيرة مقاسة بالراديان

الراديان هي وحدة قياس للزوايا المستوية وهي الوحدة الرسمية المعتمدة ضمن النظام الدولي للوحدات المستخدمة في الرياضيات والفيزياء وتعرف بأنها الزاوية المركزية المتوضعة على مركز الدائرة والتي تحدد قوساً طوله مساوي لنصف قطر الدائرة. يعادل الراديان الواحد 180π درجات، أي بالتقريب 57.29578.

رسميًا، فإنّ الراديان كمية لا بعدية، بعكس الثانية أو المتر، فهو مجرّد عدد. لذا فإنّ تدوين كلمة راديان (أو rad) هو للإيضاح فقط ويجب ألاّ يفهم منه أنّ له مفهومًا فيزيائيًا. عندما تكتب الزاوية بدون أي علامة، يقصد بشكل عام أن القيمة هي بالرىديان، بينما تضاف العلامة للإشارة إلى الدرجة.

إنّ وحدة القياس الرسمية المعتمدة ضمن النظام الدولي للوحدات للزاوية الفراغية الصلبة هي الستراديان، وهي، بعكس الراديان، كميّة بعديّة ذات مفهوم فيزيائي.

تعريف

يعرّف الراديان الواحد على أنّه الزاوية المركزيّة في دائرة التي تقابل قوسًا طوله مساوٍ لطول نصف قطر الدائرة.

ملف:Circle arc radius.png
زاوية مركزيّة مقدارها 1 راديان تكون مقابلة لقوس طوله يساوي طول نصف قطر الدائرة

وبشكل عام، فإنّ مقدار أي زاوية مركزيّة يحصرها نصفا قطر ما بالراديان تساوي النسبة بين طول القوس المقابل للزاوية وبين نصف قطر الدائرة، أي أنّ:

θ=lR

بحيث أنّ:

θ هي الزاوية المركزيّة،
l هو طول القوس،
وR هو طول نصف قطر الدائرة.

بالمقابل، فبالإمكان حساب طول قوس في دائرة نصف قطرها R يقابل زاوية مركزية مقدارها θ: l=θR

من هذا القانون بالإمكان الاستدلال على مقدار الراديان الواحد. فإنّ زاوية دائرية كاملة تعادل 360، وهي تقابل قوسًا يساوي كل محيط الدائرة، لذا فإنّ مقدارها بالراديان هو: 2πRR=2π. إذا كانت زاوية مقدارها 360 درجة تعادل 2π راديان، فيعادل الراديان الواحد 180π درجة.

تاريخ

أوّل من أتته فكرة الراديان كان الرياضي البريطاني روجر كوتس، عام 1714. مع أنّه لم يطلق على الفكرة كلمة راديان، فقد فهم كوتس مدى بديهيّة المفهوم كوحدة للقياس الزاوي.

تحويل بين الراديان والدرجة

للتحويل من راديان إلى درجات يجب أن نضرب الراديان بالقيمة 180π. فعلى سبيل المثال:

1rad=180π57.29578
π3rad=π3180π=60

وبالمقابل، فللتحويل من درجات إلى راديان، يجب أن نضرب بالقيمة π180:

1=π1800.01745rad
90=90π180=π2rad

إمكانيّة أخرى هي تحويل مقدار الزاوية بالراديان إلى عدد الدورانات بواسطة القسمة على 2π. فمثلاً، إنّ 6πrad تعادل ثلاثة دورات كاملة.

قائمة بأكثر الزوايا شيوعًا وقيمها بالدرجات وبالراديان
جزء الدائرة 0 112 18 16 14 12 34 1
الزاوية بالدرجات 0 30 45 60 90 180 270 360
الزاوية بالراديان 0 π6 π4 π3 π2 π 3π2 2π

التحليل البعدي

كثيرًا ما يستخدم الراديان كوحدة القياس المفضّلة في العديد من المجالات. ففي حساب التفاضل والتكامل، مثلاً، يساعد كون الراديان كميّة غير بعديّة في صياغ المعادلات والبراهين، وهذا بسبب عدم وجود حاجة إلى "إلغاء" وحدة القياس.

إنّ استعمال الراديان، خاصّة في الدوال المثلثية كالجيب وجيب التمام وغيرها، هو بسيط. فمثلاً بواسطة الراديان بالإمكان برهنة نهاية الدالة الآتية:

limh0sinhh=1,

وهي نتيجة أساسيّة. كذلك، بالإمكان برهنة عدد من المعادلات المثلثية:

ddxsinx=cosx
d2dx2sinx=sinx.

بسبب مثل هذه الخواص وغيرها، قد تظهر الدوال المثلثية بالتمثيل الرادياني في سياقات قد لا تمت بصلة مباشرة للمفهوم الهندسي الأصلي لتلك الدوال. فمثلاً، تكون هذه الدوال حلاًّ للمعادلة التفاضلية التالية: d2ydx2=y.

طريقة أخرى لرؤية الفائدة من وراء كون الراديان كميّة لا بعدية تظهر عند التمعن بمتسلسلة تايلور للدوال المثلثيّة:

sin(x)=xx33!+x55!x77!+

فإذا لم يكن الراديان كميّة غير بعديّة، لما كان بإمكان متسلسلة تايلور أن تكتب بهذه البساطة، إذ كان يتوجّب إلغاء البعد الفيزيائي للكمية لكي نتمكن من جمع كل الحدود، لأنّ كل منها بقوّة مختلفة. فلا يمكن أن نجمع حدًا بُعده متر وحدًا بُعده متر 3.

الاستعمال في الفيزياء

إنّ استعمال وحدة الراديان في الفيزياء أمر شائع لقياس الزوايا. فعلى سبيل المثال، تقاس السرعة الزاوية في غالب الأحيان بوحدات راديان في الثانية (radsec). وإنّ وحدة الدورة في الثانية تعادل 2πrad في الثانية. كما ويقاس التّسارع الزاويّ بشكل عام بوحدة الراديان في الثانية في الثانية (radsec2).

يعود سبب الاستعمال الشائع للراديان في الفيزياء إلى نفس أسباب استعماله في الرياضيات - فإنّ استعمال الكمية يبسط الأمور في الكثير من الأحيان.

اقرأ أيضًا

قالب:تصفح النظام الدولي للوحدات

ملف:Nuvola apps edu mathematics-ar.svg بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات.

af:Radiaal be-x-old:Радыян bg:Радиан bo:གཞུ་ཚད། bs:Radijan ca:Radian cs:Radián cy:Radian da:Radian de:Radiant (Einheit) el:Ακτίνιο (μονάδα μέτρησης) Radian]] eo:Radiano es:Radián et:Radiaan eu:Radian fa:رادیان fi:Radiaani fr:Radian gan:弧度 gl:Radián he:רדיאן hr:Radijan id:Radian it:Radiante ja:ラジアン ka:რადიანი kk:Радиан ko:라디안 lt:Radianas lv:Radiāns mk:Радијан mr:त्रिज्यी ms:Radian nl:Radiaal (wiskunde) nn:Radian no:Radian pl:Radian pt:Radiano ro:Radian ru:Радиан sh:Radijan si:රේඩියනය simple:Radian sk:Radián sl:Radian sr:Радијан sv:Radian ta:ஆரையம் tg:Радиан th:เรเดียน uk:Радіан zh:弧度