طريقة العناصر المنتهية
طريقة العناصر المنتهية (Finite element method) أو يطلق عليها أيضاً تحليل العناصر المنتهية هي طريقة تحليل عددي لإيجاد الحلول التقريبية للمعادلات التفاضلية الجزئية بالإضافة إلى الحلول التكاملية. يعتمد الحل إما على إلغاء المعادلات التفاضلية الجزئية نهائياً (في الحالات الساكنة) أو تقريب المعادلات التفاضلية الجزئية إلى معادلات تفاضلية نظامية والتي يكون من الممكن حلها باستخدام عدة طرق كطريقة أويلر أو رونغي-كوتا.
تطبيقات
هناك العديد من التطبيقات لطريقة العناصر المنتهية وأغلبها تتعلق بالهندسة الميكانيكية بشكل أو بآخر، حيث تستخدم هذه الطريقة ضمن عملية تصميم وتطوير المنتجات المختلفة. بعض برامج حساب العناصر المنتهية الحديثة تقوم بدراسة الحرارة، المغناطيسية الكهربائية، تدفق السوائل...الخ.
في دراسة تصميم المنشآت، تفيد طريقة العناصر المنتهية بشكل كبير في الحصول على متانة عالية للمنشآة بالإضافة إلى تخفيف وزنها وتقليص المواد اللازمة وبالتالي الكلفة اللازمة للإنشاء.
شرح طريقة العناصر المنتهية
سوف نستخدم مثالين بسيطين لشرح طريقة العناصر المنتهية، والتي من خلالها من الممكن استخلاص الطريقة العامة. في النقاش التالي، يجب على القارئ أن يكون متفهما لمبادئ علم الحسبان والجبر الخطي.
P1 هي مسألة أحادية البعد، معطاة على الشكل التالي:
حيث معلوم و هو تابع مجهول للمتحول ، و هو المشتق الثاني للتابع بالنسبة للمتحول .
المسألة ثنائية البعد البسيطة هي مسألة ديركلت وتعطى على الشكل التالي:
حيث هي منطقة مفتوحة متصلة في المستوي الثنائي البعد الذي تكون حدوده هي عبارة عن مضلع ذو شكل جميل. و و هي المشتقات الثانية للمتحولين و على الترتيب.
من الممكن حل المسألة أحادية البعد بحساب المشتق العكسي. لكن هذه الطريقة في حل مسألة القيمة الحدية (boundary value problem) تصلح لحل المسائل أحادية البعد ولا يمكن تعميمها إلى مسائل ذات أبعاد أعلى أو مثال لها الشكل ولهذا السبب كان من الضروري تطوير طريقة العناصر المنتهية، بدءاً من البعد الأحادي وتعميمها على الأبعاد الأعلى.
الشرح هنا سوف يتم على مرحلتين والتي تعكس المرحلتين الأساسيتين الواجب تطبيقهما لحل مسألة القيمة الحدية باستخدام طريقة العناصر المنتهية:
- الخطوة الأولى: تبسيط مسألة القيمة الحدية إلى شكل بسيط تنتفي معه الحاجة إلى استخدام الحاسب للحل، بل يكون من الممكن حلها يدوياً باستخدام الورقة والقلم.
- الخطوة الثانية: هي التقطيع، حيث يتم تجزئة الشكل إلى عناصر منتهية وحل كل عنصر على حدة.
بعد هذه الخطوة سيكون لدينا صيغة متكاملة لحل مسائل ذات درجات عالية لكن يجب أن تكون خطية والتي حلولها ستكون حلاً تقريبياً لمسألة القيمة الحدية. ومن ثم يتم برمجة هذه الطريقة على الحاسوب.
الصيغة المتحولية
الخطوة الأولى هو تحويل P1 و P2 إلى مكافئاتها المتحولية. إذا كان هو حل لـ P1، عندها من أجل أي دالة متصلة يحقق شروط الانتقال الحدي، مثلاً: عند و، يكون لدينا
(1)
وبشكل معاكس، من أجل قيمة معطاة لـ فإن (1) تكون محققة من أجل أي دالة متصلة وعندها من الممكن أن يبرهن أن ستكون حلاً لـ P1 (برهان هذا ليس بالأمر السهل وهو يعتمد على فضاء سوبوليف).
وباستخدام التكامل بالأجزاء على يمين المعادلة (1) سنحصل على مايلي:
(2)
حيث تم افتراض أن .
برهان يظهر وجود حل وحيد
من الممكن اعتبار أن هو عبارة عن تابع مستمر مطلق للثنائية بحيث أن عند و (انظر فضاء سوبوليف). مثل هذه التوابع تكون ضعيفة (قابلة للاشتقاق مرة واحدة) وتكشف عن الخريطة الخطية الثنائية المتناظرة ومن ثم تعرف جداء داخلي الذي يحول إلى فضاء هلبرت. ومن ناحية أخرى، فإن الطرف الأيسر هو أيضاً جداء داخلي، ولكن هذه المرة على الفضاء Lp . وتطبيق لمبرهنة تمثيل رايسز على فضاءات هلبرت يظهر أنه يوجد حل وحيد يحل (2) وبالتالي يحل المسألة P1.
الصيغة المتحولية لـ P2
إذا تم التكامل بالأجزاء باستخدام مبرهنة غرين حيث نجد أنه إذا كان هو حل لـ P2، فإنه من أجل أي يكون
حيث تحقق التدرج وترمز إلى الجداء الداخلي في المستوي ثنائي البعد.
التقطيع
الفكرة الأساسية في طريقة العناصر المنتهية هو استبدال المسألة الخطية ذات الأبعاد اللانهائية: أوجد قيمة بحيث أن
بصيغة بعدية منتهية:
- (3) أوجد such that
حيث هو فضاء جزئي خطي ذو عدد أبعاد منته من . هناك العديد من الخيارات لـ . لكن في طريقة العناصر المنتهية نعتبر على أنها فضاء للأجزاء الخطية للتابع.
في المسألة P1، نأخذ المقطع باختيار قيم من ونعرف على الشكل:
حيث نعرف و . لاحظ أن التوابع في هي توابع غير قابلة للاشتقاق بالاعتماد على التعريف المبدئي للحسبان. إذا كان فإن المشتق يكون عادة غير معرف عند أي , . لكن يوجد مشتق عند كل قيمة للمتحول ومن الممكن استخدام هذا المشتق لغرض التكامل بالأجزاء.
من أجل المسألة P2 نحتاج أن تكون عبارة عن مجموعة من التوابع من . في الشكل الموضح على اليسار، يظهر تثليث مضلعي لمنطقة مضلعية من 15 ضلع في المستوي (في الأسفل)، والتابع الخطى المجزأ (ملوناً، في الأعلى) لهذا المضلع الذي يكون خطياً على كل مثلث من التثليث. حيث أن الفضاء سيحتوي على توابع تكون خطية على كل مثلث من التثليث المختار.
تظهر مكتوبة على الشكل في بعض المراجع، وذلك بسبب أنه يوجد هدف في الحصول على حلول أدق وأدق للمسألة المتقطعة (3) الذي سيكون إلى حد ما سيؤدي إلى حد المسألة الأصلية في إيجاد القيم الحدية للمسألة P2. يتم عنونة التثليث باستخدام معامل ذو قيمة حقيقية والذي يكون ذو قيمة صغيرة. سوف يتم ربط هذا المعامل بحجم أكبر مثلث وسطي الحجم في التثليث. وعندما نزيد تجزئة التثليث فإن فضاء التقطيع الخطي يجب أن يتغير مع كما يوضح الترميز .
أنظر أيضا ً
برمجيات عددية (Numerical software)
مصادر و مراجع
- Alexandre Ern, Jean-Luc Guermond: Theory and practice of finite elements. Springer, New York 2004, ISBN 0-387-20574-8
az:Sonlu elementlər üsulu bg:Метод на крайните елементи ca:Anàlisi d'elements finits cs:Metoda konečných prvků de:Finite-Elemente-Methode el:Μέθοδος πεπερασμένων στοιχείων Finite element method]] es:Método de los elementos finitos fa:روش اجزاء محدود fr:Méthode des éléments finis he:אלמנטים סופיים hu:Végeselemes módszer it:Metodo degli elementi finiti ja:有限要素法 km:វិធីហ្វៃណៃថ៍អ៊េលម៉ិន ko:유한요소법 lt:Baigtinių elementų metodas nl:Eindige-elementenmethode pl:Metoda elementów skończonych pt:Método dos elementos finitos ru:Метод конечных элементов simple:Finite element method sk:Metóda konečných prvkov sl:Metoda končnih elementov sv:Finita elementmetoden th:ระเบียบวิธีไฟไนต์เอเลเมนต์ tr:Sonlu elemanlar yöntemi uk:Метод скінченних елементів vi:Phương pháp phần tử hữu hạn zh:有限元分析