نظرية الشواش
نظرية الشواش (Chaos Theory) من أحدث النظريات الرياضية الفيزيائية -وتترجم أحيانا بنظرية الفوضى أو الهرجلة - التي تتعامل مع موضوع الجمل المتحركة (الديناميكية) اللاخطية التي تبدي نوعا من السلوك العشوائي يعرف بالشواش, وينتج هذا السلوك العشوائي إما عن طريق عدم القدرة على تحديد الشروط البدئية (تأثير الفراشة Butterfly Effect) أو عن طريق الطبيعة الفيزيائية الاحتمالية لميكانيك الكم.
تحاول نظرية الشواش أن تستشف النظام الخفي المضمر في هذه العشوائية الظاهرة محاولة وضع قواعد لدراسة مثل هذه النظم مثل الموائع والتنبؤات الجوية والنظام الشمسي واقتصاد السوق وحركة اللأسهم المالية والتزايد السكاني.
مقدمة عامة
أول من بحث في الشواش كان عالم الأرصاد، المدعو إدوارد لورينتز. ففي عام 1960 م، كان يعمل على مشكلة التنبؤِ بالطقس. على حاسوب مزود بنموذج لمحاكاة تحولات الطقس مؤلف من مجموعة مِنْ اثنتا عشرة معادلة لتشكيل الطقس. يقوم برنامجِ الحاسوبِ هذا بتوقع نظري للطقس.
في أحد أيام 1961 م، أراد رؤية سلسلة معينة من الحسابات مرة ثانية. ولتَوفير الوقتِ، بدأَ من منتصف السلسلة، بدلاً من بدايتها.
لاحظ لورينتز عند عودته، أن السلسلة قد تطورتَ بشكل مختلف. بدل من تكرار نفس النمط السابق, فقد حدث تباعد في النمطِ، يَنتهي بانحراف كبير عن المخطط الأصلي للسلسلة الأصلية.
وفي النهاية استطاع لورينتز تفسير الأمور, فقد قام الحاسوب بتخزين الأعداد بستة منازل عشرية في الذاكرة. لكنه كان يظهر ثلاثة أرقام عشرية فقط. عندما قام لورينتز بإدخال عدد من منتصف السلسلة أعطاه الرقم الظاهر ذو المنازل العشرية الثلاث وهذا أدى لاختلاف بسيط جدا عن الرقم الأصلي الموجود في الحسابات. ورغم أن هذا الخلاف بسيط جدا وضئيل فقد تطور مع تسلسل الحسابات إلى فروق ضخمة تجلت بانحرافات المخططات الواضحة.
كانت الأفكار التقليدية وقتها تعتبر مثل هذا التقريب إلى ثلاثة مراتب عشرية دقيقا جدا ولم يكن الفيزيائيون يلقون بالا إلى الفروقات التي يمكن أن تنتج بعد مدة من هذه الفروقات الضئيلة في الشروط البدئية للتجربة, لكن لورينتز غير هذه الفكرة.
جاءَ هذا التأثيرِ لكي يعرف بتأثيرِ الفراشة. فكمية الاختلاف الضئيلة في نقاط بداية المنحنيين كانت صغيرة جدا لدرجة تشبيهها بخفقان جناح فراشة في الهواء لكن آثارها كانت عظيمة لدرجة التنبؤ بإعصار يضرب منطقة من العالم.
من هذه الفكرة، صرّح لورينتز بأنّه من المستحيل توقع الطقس بدقّة. على أية حال، قادَ هذا الاكتشاف لورينتز إلى تشكيل النظرية التي عرفت لاحقا بنظرية الشواش.
بدأ لورينتز البحث عن نظام (مجموعة معادلات) أسهل من نظامه ذو الاثني عشر معادلة ليدرس حساسيته للشروط البدئية. اعتمد لورينتز نموذجا يصف جملة دولاب مائي مؤلفة من ثلاث معادلات.
حصل لورينتز من جديد على حساسية عالية للشروط البدئية في هذا النموذج, فالنموذج كان يقدم نموذجا شواشيا يتغير مخططه بتغير الشروط البدئية لكن المدهش في الموضوع أن شكل المخططات كان دائما متشابها بشكل لولب مزدوج. تقليديا، كانت توصف الحركات بأنها إما أن تؤدي إلى حالة مستقرة حيث تصل المتغيرات إلى قيم ثابتة لا تتغير أو حركات دورية تقوم بنفس الحركات على نفس المسارات بشكل مستمر, لكن في هذه الحالة حصل لورينتز على حركات ذات شكل متشابه لكنها غير متطابقة وبالتالي غير دورية, وهذا النمط من الحركة هو ما أسماه لورينتز فيما بعد بجاذب لورينتز.
مفاهيم أساسية
- الجملة الخطية أو النظام الخطي (linear system) تساوي مجموع أجزائها بينما الجملة اللاخطية يمكن أن تكون أكثر من مجموع أجزائها. هذا يقتضي ضرورة دراسة الجملة ككل وعدم الاكتفاء بدراسة أجزاء الجملة كلا على حدة.
- معظم الظواهر الطبيعية في الكون تتألف من جمل لاخطية في حين تشكل الجمل الخطية نزرا يسيرا من تكوين العالم غالبا ما تظهر بعد إجرائنا لكثير من الإجراءات والتقريبات لجعل شروط الظاهرة نظامية والجملة خطية.
الحركة الشواشية
يمكن تصنيف حركة ما بأنها شواشية إذا أبدت الخواص التالية:
- أن تكون مقيدة.
- حساسة للشروط البدئية.
- قابلية التحويل (transitive).
- تراص مساراتها الدورية (periodic orbits).
الحساسية للشروط البدئية (initial conditions) تعني أن أي جملتين متماثلتين: تسلكان مسارات مختلفة كليا ضمن فضائهما الطوري إذا اختلفت الشروط البدئية ولو بشكل ضئيل.
قابلية التحويل (transivity) تعني أنه يمكن تطبيق تابع تحويل على أي فترة زمنية ت1 بحيث يقوم بمطها ومطابقتها مع فترة زمنية أخرى ت2.
جواذب الحركة
أهم طرق تمثيل الحركات هي مخططات الطور حيث يقوم كل محور في نظام الإحداثيات بتمثيل أحد أبعاد حالة الجملة. فمثلا إذا كان الجسيم بحالة راحة يمكن تمثيله بنقطة في حين إذا كانت الجملة تتحرك حركة دورية فسيكون تمثيلها بمنحن مغلق بسيط. فمن المؤكد إذن أن مخطط الطور لجملة معطاة يعتمد على الشروط البدئية للجملة إضافة إلى مجموعة من المؤشرات (Parameters) لكن في الكثير من الأحيان تبين مخططات الطور بأن حركات الجمل تتطور مع الزمن لتؤدي في النهاية نفس الحركة وذلك مهما كانت الشروط البدئية, كما لو أن الجملة تنجذب لأداء هذه الحركة. لذلك ندعو هذه الأنماط من الحركات الجاذبة للجمل بالجواذب (Attractors), من هذه الجواذب ما هو بسيط على شكل نقطي أو منحنيات دائرية تدعى بالدوائر الحدية. بالمقابل تبدي الحركات الشواشية جواذب غريبة ومعقدة تدعى بالجاذب الغريب) (Strange Attractor).
أنظر أيضا
|
|
|
مراجع
- Li, T. Y. and Yorke, J. A. "Period Three Implies Chaos." American Mathematical Monthly 82, 985-992, 1975.
كتب مرجعية
- Ott, Edward (2002). Chaos in Dynamical Systems. Cambridge University Press New, York. ISBN 0-521-01084-5.
- Gutzwiller, Martin (1990). Chaos in Classical and Quantum Mechanics. Springer-Verlag New York, LLC. ISBN 0-387-97173-4.
- Moon, Francis (1990). Chaotic and Fractal Dynamics. Springer-Verlag New York, LLC. ISBN 0-471-54571-6.
- Tufillaro, Abbott, Reilly (1992). An experimental approach to nonlinear dynamics and chaos. Addison-Wesley New York. ISBN 0-201-55441-0.
- Gollub, J. P.; Baker, G. L. (1996). Chaotic dynamics. Cambridge University Press. ISBN 0-521-47685-2.
- Baker, G. L. (1996). Chaos, Scattering and Statistical Mechanics. Cambridge University Press. ISBN 0-521-39511-9.
- Alligood, K. T. (1997). Chaos: an introduction to dynamical systems. Springer-Verlag New York, LLC. ISBN 0-387-94677-2.
- Kiel, L. Douglas; Elliott, Euel W. (1997). Chaos Theory in the Social Sciences. Perseus Publishing. ISBN 0-472-08472-0.
- Strogatz, Steven (2000). Nonlinear Dynamics and Chaos. Perseus Publishing. ISBN 0-7382-0453-6.
- Sprott, Julien Clinton (2003). Chaos and Time-Series Analysis. Oxford University Press. ISBN 0-19-850840-9.
- Hoover, William Graham (1999,2001). Time Reversibility, Computer Simulation, and Chaos. World Scientific. ISBN 981-02-4073-2.
- Devaney, Robert L. (2003). An Introduction to Chaotic Dynamical Systems, 2nd ed,. Westview Press. ISBN 0-8133-4085-3.
- Badii, R.; Politi A. (1997). "Complexity: hierarchical structures and scaling in physics". Cambridge University Press. ISBN 0-521-66385-7. [١].
كتب مبسطة وشائعة
- "Turbulent Mirror" by *John Briggs and David Peat
- "Seven Life Lessons of Chaos" by *John Briggs and David Peat
- The Beauty of Fractals, by H.-O. Peitgen and P.H. Richter
- Chance and Chaos, by David Ruelle
- Computers, Pattern, Chaos, and Beauty, by Clifford A. Pickover
- Fractals, by Hans Lauwerier
- Fractals Everywhere, by Michael Barnsley
- Order Out of Chaos, by Ilya Prigogine and Isabelle Stengers
- Chaos and Life, by Richard J Bird
- Does God Play Dice?, by Ian Stewart
- The Science of Fractal Images, by Heinz-Otto Peitgen and Dietmar Saupe, Eds.
- Explaining Chaos, by Peter Smith
- Chaos: Making a New Science, New York: Penguin, by James Gleick
- Complexity, by M. Mitchell Waldrop
- Chaos, Fractals and Self-organisation, by Arvind Kumar
- Chaotic Evolution and Strange Attractors, by David Ruelle
- Sync: The emerging science of spontaneous order, by Steven Strogatz
- The Essence of Chaos, by Edward Lorenz
- Deep Simplicity, by John Gribbin
- The Road To Chaos, by Yoshisuke Ueda
- The Chaos Avant-Garde: Memoirs of the Early Days of Chaos Theory, Edited by Ralph H. Abraham and Yoshisuke Ueda
- From Random Walks to Chaotic Crashes: The Linear Genealogy of the Efficient Capital Market Hypothesis, by Lawrence A. Cunningham
- Chaos Theory in the Social Sciences, edited by L Douglas Kiel, Euel W Elliott.
وصلات خارجية
- Nonlinear Dynamics Research Group with Animations in Flash
- The Chaos group at the University of Maryland
- The Chaos Hypertextbook. An introductory primer on chaos and fractals.
- Society for Chaos Theory in Psychology & Life Sciences
- Interactive live chaotic pendulum experiment, allows users to interact and sample data from a real working damped driven chaotic pendulum
- Nonlinear dynamics: how science comprehends chaos, talk presented by Sunny Auyang, 1998.
- Nonlinear Dynamics. Models of bifurcation and chaos by Elmer G. Wiens
- Gleick's Chaos (excerpt)
- Systems Analysis, Modelling and Prediction Group at the University of Oxford.
|
ملف:Nuvola apps edu mathematics-ar.svg | بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات. |
ba:Хаос теорияһы
bg:Теория на хаоса
bn:বিশৃঙ্খলা তত্ত্ব
ca:Teoria del caos
cs:Teorie chaosu
da:Kaosteori
de:Chaosforschung
el:Θεωρία του χάους
Chaos theory]]
eo:Teorio de kaoso
es:Teoría del caos
fa:نظریه آشوب
fi:Kaaosteoria
fr:Théorie du chaos
gan:混沌理論
gl:Teoría do caos
he:תורת הכאוס
hr:Teorija kaosa
hu:Káoszelmélet
id:Teori chaos
it:Teoria del caos
ja:カオス理論
ko:혼돈 이론
lt:Chaoso teorija
ml:കയോസ് സിദ്ധാന്തം
ms:Teori kekacauan
nl:Chaostheorie
nn:Kaosteori
no:Kaosteori
pam:Teoriang chaos
pdc:Chaos Theory
pl:Chaos (matematyka)
pt:Teoria do caos
ro:Teoria haosului
ru:Теория хаоса
scn:Tiurìa dû caos
sh:Teorija kaosa
simple:Chaos theory
sk:Teória chaosu
sr:Теорија хаоса
sv:Kaosforskning
ta:ஒழுங்கின்மை கோட்பாடு
th:ทฤษฎีความอลวน
tr:Kaos kuramı
uk:Теорія хаосу
ur:نظریۂ شواش
vi:Lý thuyết hỗn loạn
zh:混沌理论