معادلة خطية
في الجبر، المعادلة الخطية (بالإنجليزية: Linear equation) هي المعادلة التي كل حد فيها هو عددًا ثابتًا، أو جداء عدد ثابت بالقوة الأولى لمتغيّر واحد فقط. قد تحتوي المعادلة الخطية على متغيّرٍ واحد، أو أي عدد آخر من المتغيّرات. وإنّ للمعادلات الخطية استعمالات شائعة في الرياضيات التطبيقية، كما وأنّ لها أهمّية كبرى في نمذجة العديد من الظواهر. وتبرز أهمّيتها حتّى في الظواهر غير الخطيّة، حيث بالإمكان نمذجتها، في بعض الأحيان، كظواهر خطيّة، إذا ما فرضنا أنّ بعض الكميات في النظام تتغيّر في مجال ضيق جدًا، وهو ما يسمّى بالإخطاط.
معادلة خطية بمجهولين
هي معادلة تساوي بين دالتين خطيتين. لذلك فإن المعادلة التالية تمثل معادلة خطية بالنسبة لمتغيرين حقيقيين x وy :
بما أن المعادلة الخطية تحتوي فقط توابع خطية بالنسبة للمتغيرات الموجودة فيها (أي كثيرات حدود من الدرجة الأولى)، فإن مصطلحات مثل أو أو أو غير مسموحة في هذه المعادلات، لكونها غير خطيّة.
أنّ الطريقة الأكثير شيوعًا لتدوين معادلة خطية بمجهولين هي كالتالي:
حيث أنّ a وb هما عددان ثابتان. إنّ مصدر تسمية المعادلة ب"خطيّة" يعود إلى كونها تمثّل خطوطًا في المستوى إذا قمنا برسم رسمها البياني. في هذا التمثيل، تمثّل القيمة a ما يعرف بميل الخط، أي بكم تكبر قيمة y إذا كبرت قيمة x بوحدة واحدة، في حين تمثّل القيمة b تقاطع الرسم البياني الخطي للدالة مع محور المتغيّر y.
الصيغ المختلفة لمعادلة خطية بمجهولين
ليست الصيغة أعلاه هي الوحيدة لتدوين معادلة خطية بمجهولين. فبالإمكان تحويل الصورة أعلاه إلى عدد من الصور أو الهيئات الأخرى. في هذا القسم تشير الأحرف x وy وt إلى متغيّرات، في حين تشير باقي الأحرف إلى قيم عددية ثابتة.
الصيغة العامّة
بحيث A وB ليسا كليهما صفرًا. هذه الصيغة هي أكثر صيغة عامّة لوصف معادلة خطية، وعمومًا يكون فيها A قيمة موجبة. إنّ الرسم البياني لهذه المعادلة هو خط مستقيم، وبالإمكان ترجمة كل خط مستقيم في المستوى إلى معادلة بهذا الشكل. إذا لم يكن A صفرًا، بالإمكان وجود نقطة تقاطع الخط مع محور x: . بطريقة مماثلة، فإذا لم يكن B صفرًا، يكون للخط نقطة تقاطع مع محور y في .
الصيغة المتبعة
دوال ومؤثرات خطيّة
في جميع الصيغ أعلاه (إذا فرضنا أن رسم الخط البياني ليس عاموديًا)، كان المتغير y هو دالّة من المتغيّر x، ويكون الرسم البياني للدالة هو نفسه الرسم البياني للمعادلة.
في الحالة الخاصة التي يمر فيها الخط المستقيم في نقطة الأصل وإذا كان بالإمكان كتابة المعادلة بالصورة ، فتكون لـf الخواص التالية:
وأيضًا:
لأي قيمة a. أي دالة تحقّق هذه الخواص تدعى دالّة خطيّة أو اقتران خطي.
انظر أيضاً
ملف:Nuvola apps edu mathematics-ar.svg | هذه بذرة مقالة عن الرياضيات تحتاج للنمو والتحسين، فساهم في إثرائها بالمشاركة في تحريرها. |
ملف:Nuvola apps edu mathematics-ar.svg | بوابة رياضيات تصفح مقالات ويكيبيديا المهتمة بالرياضيات. |
am:ሊኒያር እኩልዮሽ be-x-old:Лінейнае раўнаньне bg:Линейно уравнение ca:Equació lineal cs:Lineární rovnice da:Linjens ligning de:Lineare Gleichung Linear equation]] eo:Lineara ekvacio es:Ecuación de primer grado et:Lineaarvõrrand eu:Ekuazio lineal fr:Équation linéaire he:משוואה לינארית hi:रेखीय समीकरण hr:Jednadžba pravca id:Persamaan linear is:Línuleg jafna it:Equazione lineare ja:線型方程式 km:សមីការដឺក្រេទី១ ko:일차 방정식 lmo:Equazziun lineara mk:Линеарна равенка ml:രേഖീയസമവാക്യം mn:Шугаман тэгшитгэл nap:Equazione lineare nl:Lineaire vergelijking pl:Równanie liniowe pt:Equação linear ru:Линейное уравнение simple:Linear equation sk:Lineárna rovnica sl:Linearna enačba sv:Linjär ekvation th:สมการเชิงเส้น tr:Doğrusal denklem uk:Лінійне рівняння ur:لکیری مساوات uz:Chiziqli tenglama vi:Phương trình tuyến tính vls:Êestegroadsvergelykinge zh:一次方程