سفينة فضاء البلازما المغناطيسية
هذه المقالة يتيمة حيث أن عددًا قليلاً من المقالات أو لا مقالات إطلاقًا تصل إليها. ساعد من فضلك بإضافة وصلات في المقالات ذات العلاقة. (يونيو_2011) |
هذه المقالة بحاجة إلى إعادة كتابة باستخدام التنسيق العام لويكيبيديا، مثل استخدام صيغ الويكي، وإضافة روابط. الرجاء إعادة صياغة المقالة بشكل يتماشى مع دليل تنسيق المقالات. بإمكانك إزالة هذه الرسالة بعد عمل التعديلات اللازمة. وسمت هذا المقالة منذ: يونيو_2011 |
اولا:معني كلمة بلازما.
البلازما هي حالة خاصة من حالات المادة الأربعة وتطلق على المادة المحتوية على كمبة معينة من الجسيمات الأولية المشحونة كهربائياً(الأيونات، الغاز المتأين)، أي أن الالكترونات تكون منفصلة تماما عن نوياتها، تعطي هذه الحالة للمادة خواصا كهربائية وسلوكاً خاص، وأهمية كبرى في مختلف مظاهر حياتنا اليومية.
يطلق مصطلح البلازما عادة على الحالة الرابعة من الحالات التي توجد بها المادة في الوجود. -الحالة الأولى : الحالة الصلبة. -الحالة الثانية : الحالة السائلة. -الحالة الثالثة : الحالة الغازية.
فإذا قمنا بتسخين المادة الصلبة، ستتحول إلى حالة سائلة، واذا تم تسخينها وهي سائلة، ستتحول إلى حالة غازية، وعادة ما يتكون الغاز من ذرات أحادية الشحنة أو جزيئات متطايرة ثم تتصادم ببعضها بعضا. واذا قمنا باكساب الغاز طاقة(عن طريق تسخينه أو تمرير تيار كهربائي مرتفع أو ضوء ليزر كثيف من خلاله)، فان بعض الذرات تكتسب طاقة كافية لتحرير الكترون سالب الشحنة ليصبح ذا شحنة كهربية موجبة.
خواص حالة البلازما: تشكل البلازما وسطاً ناقلاً من الجسيمات المشحونة، الناقلة للتيار الكهربائي والمولدة للحقول المغناطيسية. تعتبر حالة البلازما هي الحالة الأكثر شيوعا للمادة التي تضم 99% من الكون المرئي لدينا وتشمل حالة جميع النجوم والمجرات والاجرام السماوية.
والأن بعد تقدم العلم وداعا لصوريخ الاحتارق الكميائى وسيبدأ عصر جديد بصاروخ الدفع بالبلازما. جهاز الدفع الصاروخي بالبلازما
البلازما عبارة عن تجمع من جسيمات سالبة (الكترونات) وأخرى موجبة (أيونات)، وهي بذلك تمتلك خواص تختلف اساسا عن التي يمتلكها الغاز المحايد (ليس له شحنة كهربية)، ويمكن التحكم في البلازما عن طريق المجال المغناطيسي. كما أنها موصل جيد للكهرباء، فعند تمرير تيار كهربائي خلال البلازما واستخدام المجال المغناطيسي، يمكن بذلك اخضاع البلازما لقوة كهرومغناطيسية مشابهة لتلك التي يعمل بها المحرك الكهربي، وهذه القوة يمكن استخدامها بشكل فعال لزيادة سرعة البلازما ودفعها بسرعة عالية جدا قد تصل إلى 60 كيلومترا في الثانية، وبهذه الطريقة يتم إنتاج قوة دفع يمكنها دفع أي مركبة فضائية في الفضاء. ويطلق على هذا الجهاز الذي يقوم بتوليد وتسريع البلازما اسم صاروخ البلازما أو محرك البلازما أو " جهاز الدفع بالبلازما” Plasma Thruster، وهو عبارة عن صاروخ كهربائي لاعتماده على الطاقة الكهربية بدلا من احتراق الوقود. ويركز مختبر الدفع بالبلازما على دراسة الفيزياء المعقدة للبلازما وتطوير أنواع مختلفة من صواريخ البلازما. وبالنسبة إلى أهمية تقنية الدفع بالبلازما في المركبات الفضائية، فإن معظم الصواريخ المستخدمة حاليا في الفضاء هي صواريخ كيميائية (بوقود كيميائي) تعتمد على عملية الاحتراق، أي تحرق الوقود السائل داخل حجرة الاحتراق لإنتاج غاز كهربي محايد، يخرج كعادم من الصاروخ بسرعة لا تتجاوز 3 كيلومترات في الثانية. وكلما كانت سرعة الغاز الخارج من الصاروخ عالية، قلت نسبة الوقود المستخدم لدفع مركبة فضائية من مكان لآخر في الفضاء، ولذا نحتاج إلى عدة أطنان من الوقود لإرسال مركبة فضائية كبيرة مأهولة أو على متنها معدات ثقيلة. أما إذا استخدمنا صاروخ البلازما الذي تصل سرعة العادم فيه إلى 60 كيلومتراً في الثانية، فان وزن المادة الدافعة يمثل جزءا صغيرا بالمقارنة بتلك التي يستخدمها الصاروخ الكيميائي.
ملحوظة:أن صواريخ البلازما تستخدم فقط في محيط الفضاء الخارجي، أي عند وصول المركبة إلى المدار المخصص لها، لأننا ما زلنا نعتمد على عملية الدفع الكيميائي لإطلاق المركبات الفضائية من على سطح الأرض. وقد ساعد استخدام الدفع بالبلازما في المدارات على توفير قدر هائل في كمية المادة المستخدمة في عملية الدفع والتي يجب إطلاقها، وهذا يعني توفيرا كبيرا في تكلفة عملية الإطلاق، إذ تصل تكلفة إطلاق كيلوغرام واحد من هذه المادة ما بين 20 إلى 200 ألف دولار. وتعتبر المركبة الفضائية Deep Space-1 التابعة لـ«ناسا» التي أطلقت عام 1998م أول مركبة تستخدم صواريخ البلازما، وقد حققت مهمتها بنجاح باهر، حيث مكن المحرك الأيوني المركبة من السفر لمسافة 320 مليون كيلومتر، ومن اعتراض أحد الكويكبات السيارة وأحد المذنبات، وقد استهلكت 80 كيلوغراما فقط من الوقود.
طبيقات البلازما :
شكل البلازما اساسا قويا لمجموعة من تطبيقات وأدوات التقنية المهمة بالإضافة إلى فهمنا وادراكنا لمعظم الكون من حولنا، فهي تزود الاساس والدعامة للتطبيقات الحالية مثل معالجة بلازما أشباه الموصلات وتعقيم بعض المنتجات الطبية والمصابيح والليزر والمايكرويف الكهربائي عالي المصدر وكذلك التطبيقات المحتملة المهمة مثل جيل الطاقة الكهربائية من الانشطار والسيطرة على التلوث وإزالة المواد الكيميائية الخطرة.
علم البلازما يستثمر تشكيلة متنوعة من مجالات العلم تتراوح من فيزياء البلازما إلى التطبيقات الكيميائية، الفيزياء الذرية والجزيئية، وعلم المادة. انتشارها وطبيعة تنوع حقول الدراسة تميّز طبيعة تكون البلازما، التي تتضمن الغازات المؤينة التي تتراوح من مؤين ضعيف إلى المؤين إلى حد كبير، ومن الاصطدامية إلى الثبات، ومن البرودة إلى الحرارة. هذه الشروط تميز تراوح البلازما المختلف من الغازات عالية الضغط نسبيا مع جزء صغير من الذرات المؤينة ومستوى قليل نسبيا من الجزئيات المشحونة بدرجات حرارة، على سبيل المثال، البلازما الستعملة في معالجة رقائق الحاسوب والاضاءة، إلى تلك الغازات ذات الكثافة المنخفضة جدا مع جزء كبير من ذرات الغاز المتأين والمشحونة بدرجة حرارة عالية جدا، على سبيل المثال، بلازما الإنشطار.
الأنواع المختلفة للبلازما تشكل اساس التطبيقات المتنوعة والظواهر الطبيعية المختلفة. على كل حال، العديد من الاعتبارات الاساسية لتنوع المجالات الواسعة التي تميز العديد من البلازما سواء الطبيعية منها أو الصناعية والتي هي مهمة في حياتنا.
إن التنوع الذي يتضمن "علم بلازما" يجعل الموضوع صعب التمييز. على أية حال، هو ذلك التنوع نفسه الذي يجعله المساهم المهم في تشكيلة واسعة من التطبيقات والتطور التكنولوجي. تحت قائمة العديد من التطبيقات التقنية للبلازما.
بعض التطبيقات التجارية والصناعية للبلازما :
معالجة الإشعاع مثل:-
• تنقية المياه
• نمو النباتات
المعالجة الحجمية مثل:-
• معالجة الغاز المسال
• معالجة النفايات
المعالجة الكيميائية مثل:-
• ترسيب رقائق الماس
• بودرة السيراميك
مصادر الضوء مثل:-
• مصابيح الكثافة العالية
• مصابيح الضغط المنخفض
• مصادر إضاءة خاصة
في الطب مثل:-
• معالجة السطوح
• تعقيم الآلات الطبية
البلازما والفضاء :
يعتقد العديد من الناس أن الفضاء بين الشمس وكواكبها فارغة لا تحتوي على شيء، فراغ مجرد من الطاقة أو المادة، لكن الفضاء ليس خاليا. تبعث الشمس البلازما بشكل ثابت، المادة في حالة ساخنة بشدة وتنتقل بكل الإتجاهات في سرعات عالية جدا لتنتشر في كامل النظام الشمسي وما بعده.
بدراسة العمليات التي تحدث في غلاف الأرض المغناطيسي (حيث حقل الأرض المغناطيسي له تأثير أعظم من حقل الشمس الواسع) وحول كواكب أخرى، نحن قادرون بشكل أفضل على تقدير الدور المهم للبلازما في كافة أنحاء الكون البلازمي. يعتبر هذا المختبر الفضائي البلازمي نافذتنا إلى النجوم.
إن الغلاف المغناطيسي للارض مختفي عادة بسبب أن الهيدروجين المسيطر وآيونات الهليوم التي تصل في خلال الريح الشمسية لا تبعثر الضوء إلى أطوال الموجة المرئية. على أية حال، تبعث المذنبات آيونات أثقل تكون مرئية والتي ينشأ عنها ذيل من البلازما الرائع الشكل. صور غلاف الأرض المغناطيسي تظهر كأنها منطقة تفاعل مذنب كبيرة جدا.
إن الشمس هو نجم متغير، خصوصا في نواتجه من الإشعاع فوق البنفسجي والأشعة السينية والجزيئات والحقول المغناطيسية. الإختلافات الكبيرة المرسلة يحدث في كافة الأنحاء التي تقع داخل نطاق تأثير الشمس، وتدعى هيلوسفير Heliosphere والتي تتضمن الرياح الشمسية وكل غلاف النظام الشمسي المغناطيسي. ويعتبر الطقس الفضائي هو دراسة لكيفية ومدى تأثير بيئة الفضاء على رواد الفضاء وعمليات الاقمار الصناعية وأنظمة الاتصال وشبكات الكهرباء الأرضية. على المدى البعيد، الطقس الفضائي يمكن أن يساهم في تغيير مناخ عالمي بصفة أولية من خلال التغير البطئ في الإشعاع الشمسي.
بينما تتدفق الرياح الشمسية أمام غلاف الأرض المغناطيسي، يتفاعل مع الحقل الجيومغناطيسي ويعمل كمولد كوني الذي ينتج ملايين الأمبيرات من التيار الكهربائي. بعض هذا التيار الكهربائي يصب في الغلاف الجوي العلوي للأرض الذي يضيئ مثل إنبوب نيون لخلق الشفق القطبي الجميل. إن الشفق دائما موجودا ذلك لأن مصدر الريح الشمسية متواجد دائما، وهم يشكلون حلقة من الإشعاعات ضمن الأيونوسفير تتمركز على كلا القطبين المغناطيسي في خط عرض عالي. على أية حال، عادة ما يروا ماعدا في الليل وأثناء العواصف الجيومغناطيسية. في منتصف الشتاء، سكّان فيربانكس وهي منطقة في الاسكا، يتمتعون بعرضين للشفق كل ثلاث ليالي.
ويمكن التحكم في البلازما عن طريق المجال المغناطيسي. كما أنها موصل جيد للكهرباء، فعند تمرير تيار كهربائي خلال البلازما واستخدام المجال المغناطيسي، يمكن بذلك اخضاع البلازما لقوة كهرومغناطيسية مشابهة لتلك التي يعمل بها المحرك الكهربي، وهذه القوة يمكن استخدامها بشكل فعال لزيادة سرعة البلازما ودفعها بسرعة عالية جدا قد تصل إلى 60 كيلومترا في الثانية، وبهذه الطريقة يتم إنتاج قوة دفع يمكنها دفع أي مركبة فضائية في الفضاء.
ويطلق على هذا الجهاز الذي يقوم بتوليد وتسريع البلازما اسم صاروخ البلازما أو محرك البلازما أو «جهاز الدفع بالبلازما» Plasma Thruster، وهو عبارة عن صاروخ كهربائي لاعتماده على الطاقة الكهربية بدلا من احتراق الوقود.
ويركز مختبر الدفع بالبلازما على دراسة الفيزياء المعقدة للبلازما وتطوير أنواع مختلفة من صواريخ البلازما.
وعن اهمية تقنية الدفع بالبلازما في المركبات الفضائية، يشير البروفسور شويري إلى أن معظم الصواريخ المستخدمة حاليا في الفضاء هي صواريخ كيميائية (بوقود كيميائي) تعتمد على عملية الاحتراق، أي تحرق الوقود السائل داخل حجرة الاحتراق لإنتاج غاز كهربي محايد، يخرج كعادم من الصاروخ بسرعة لا تتجاوز 3 كيلومترات في الثانية. وكلما كانت سرعة الغاز الخارج من الصاروخ عالية، قلت نسبة الوقود المستخدم لدفع مركبة فضائية من مكان لآخر في الفضاء، ولذا نحتاج إلى عدة أطنان من الوقود لإرسال مركبة فضائية كبيرة مأهولة أو على متنها معدات ثقيلة. أما إذا استخدمنا صاروخ البلازما الذي تصل سرعة العادم فيه إلى 60 كيلومتراً في الثانية، فان وزن المادة الدافعة يمثل جزءا صغيرا بالمقارنة بتلك التي يستخدمها الصاروخ الكيميائي. ولابد من الإشارة إلى أن صواريخ البلازما تستخدم فقط في محيط الفضاء الخارجي، أي عند وصول المركبة إلى المدار المخصص لها، لأننا ما زلنا نعتمد على عملية الدفع الكيميائي لإطلاق المركبات الفضائية من على سطح الأرض.
وقد ساعد استخدام الدفع بالبلازما في المدارات على توفير قدر هائل في كمية المادة المستخدمة في عملية الدفع والتي يجب إطلاقها، وهذا يعني توفيرا كبيرا في تكلفة عملية الإطلاق، إذ تصل تكلفة إطلاق كيلوغرام واحد من هذه المادة ما بين 20 إلى 200 ألف دولار.
وعن توجهات دول العالم لتوظيف تقنية البلازما في رحلات الفضاء المقبلة يقول البروفسور شويري انه توجد اليوم أكثر من 170 مركبة فضائية تستخدم الدفع الكهربائي، وجزء متزايد منها يستخدم أجهزة الدفع بالبلازما، حيث يوجد الآن في الفضاء 20 قمرا صناعيا للأغراض العلمية والتجارية تستخدم صواريخ البلازما للحركة في الفضاء أو لتعديل مواقعها. وتعتبر المركبة الفضائية Deep Space-1 التابعة لـ«ناسا» التي أطلقت عام 1998 أول مركبة تستخدم صواريخ البلازما، وقد حققت مهمتها بنجاح باهر، حيث مكن المحرك الأيوني المركبة من السفر لمسافة 320 مليون كيلومتر، ومن اعتراض أحد الكويكبات السيارة وأحد المذنبات، وقد استهلكت 80 كيلوغراما فقط من الوقود. كما حققت السفينة الفضائية SMART-1 ـ التي أطلقتها وكالة الفضاء الأوروبية في سبتمبر (ايلول) 2003، نجاحا آخر ووصلت لأحد المدارات حول القمر في نوفمبر (تشرين الثاني) 2004، وقد استخدمت المركبة نوعا من صاروخ البلازما يطلق عليه Hall thruster، والذي استهلك 10 كيلوغرامات فقط من غاز الزينون xenon. كذلك استخدمت مركبة الفضاء اليابانية HAYABUSA Asteroid Explorer نوعا آخر من المحركات الأيونية للوصول إلى أحد الكويكبات السيارة مستهلكة 22 كيلوغراما فقط من وقود غاز الزينون. وتعكس كل هذه المهمات الناجحة المزايا الواضحة لتقنية الدفع بالبلازما.